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Abstract

A new automatic shape recognition algorithm has been developed to
extract craniofacial landmarks from laterai skull x-rays (cephalograms). The
locations of these landmarks are used by orthodontists in what is referred
to as a cephalometric evaluation. The evaluation assists in the diagnosis of
anomalies and in the monitoring of treatments. The algorithm is based on
grey-scale mathematical morphology. A statistical approach with training
was used to overcome subtle differences in skeletal topographies.
Decomposition was used to desensitize the algorithm to size differences.
Training was aiso used to minimize the search window sizes for improving
speed and minimizing the detection of false targets. A system was trained
to locate 20 landmarks. Test on 40 x-rays showed on average, 88% of the

landmarks were located to within an acceptable accuracy of 2mm.
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I. INTRODUCTION

There are some 20 - 30 anatomical landmarks visible on lateral
skull x-rays that are commonly used by orthodontists in what is called a
cephalometric evaluation [1}. The locations of these points form the basis
of a series of angular and linear measurements that make up the
evaluation. At present these landmarks are located by hand or digitized
using a graphics tablet. The task is usually carried out in two steps. First,
a simplified tracing is made of the bony and soft tissue outlines visible
on the x-ray. Then, the landmark locations are extracted from corners,
intersections and other extremum points on these lines. This tedious
process is subject to human error and needs to be repeated for each
patient. Therefore, the motivation exists to automate this repetitive and

time consuming process.

A. Previous Work

Previous attempts to automate the landmarking of cephalograms
followed a strategy similar to that used by orthodontists. These approaches
employed a combination of image processing techniques to extract the
important edges first. Landmark locations are then found on the edges
using a geometrical description of the landmark. For example, the tip of

the nose is found on the most anterior point of the outline of the nose.

Some of the earliest research was by Lévy-ldandel er al. [2] who
used a knowledge-based line extraction technique. They begin by first
pre-processing the digital x-ray image using histogram equalization and

median filtering to enhance contrast and remove some noise. The



Mero-Vassy operator [3] was then used to enhance edges. The relevant
edges are then extracted using a knowledge-based line tracker. Lines are
tracked in a pre-deteimined order following a set of knowledge-based rules
toward set goals. The landmarks are then located on these lines according
to their geometric definitions. Unfortunately, the algorithm cannot be used
to locate landmarks which do not lie on edges. The algorithm also relies

on good quality x-rays, something which cannot be guaranteed in practice.

Nugent et al. [4], [5] also proposed a method using a

knowledge-based line extractor. In addition, they used a resolution pyramid
to improve processing time. A 512x480 digital x-ray image is first

operated on at a much reduced resolution of 64x60. Once the landmarks
are found the resolution is increased by factors of two and the locations
are fine tuned. However, the line tracking algorithm is somewhat ad-hoc,
as various edges are traced and landmarks located according to the

authors’ geometric description of them.

Contreras-Vidal and Garza-Garza [6], Jackson er al. [7], Cohen and

Linney {8], and Cohen et al. [9] also approached the problem with some
form of knowledge-based edge tracking.

The main problem with these techniques is that they require
consistent good quality x-rays. If an x-ray contains extra lines, which is
often the case because of the symmetric features on either side of the
face, or if the x-ray is poorly exposed resulting in fragmented lines, the

critical lines defining the landmarks may not be tracked properly.

B. Shape Recognition

Instead of trying to duplicate the orthodontist by extracting edges
first, why not attempt to locate the landmarks directly? After all, it is the

location of the landmarks which is critical to the measurements. If



necessary, the tracing could be obtained later by fitting a standard set of
curves to the located landmarks. The line tracing wiil not be as precise,
but most of the emphasis is placed on the landmark locations as it should
be. The problem is then one of shape recognition, also known as image

matching or object recognition.

A desirable feature of the cephalometric shape recognition algorithm
is to allow the orthodontist to define a set of landmarks. Training could
be used to teach the algorithm the shapes and locations of the landmarks
as judged by the orthodontist. This is desirable because orthodontists do
not always share the same views and preferences when it comes to a
selection of landmarks. Also, one may wish to experiment with new
landmark definitions. Personalizing is possible if a general shape

recognition algorithm is developed.

Most image matching schemes are based on either minimizing the
mean squared error or maximizing the image correlation [10]-[13]. Let the
signal f represent an image in which the image g of size W is being
sought. Let k represent a shifting vector which translates the image g over

the image f. Then, the root square error function to be minimized is

ECk)=V Y, (fntk)-g(n)P. (1.1)

neW

A more popular error function is the sum of absolute differences computed

as

E(k)=Y, | Antk)—g(n)]. (1.2)

nelW

This function is more popular because it requires only addition and sign

changes, while the mean squared error uses multiplication.



Matching using classical linear cross-correlation involves searching

for the maximum using

Lp(k)=Y A ntk)g(n). (1.3)

ne W

where Ly(k) is the cross-correlation of f(x) with g(x). Cross-correlation
methods work well for either signals that maintain a zero average such as

communication and radar signals or in cases such as images where a zero

average or Zg(n)=0 has been enforced. Although a maximum produced
neW

by cross-correlation satisfies necessary conditions for a match it is not
sufficient. It is easy to produce an example where the maximum does not
represent a match. Figure. 1.1 shows a 3x3 template and 3 different 3x3

images which will produce the same cross-correlation.

01310 Z( }=0 11211
. . gln)=
sought g ne W
0 3 0 ae——— _l _l
A R A
images 0jo1jo0 016 0jo0
being [0]3]0 3lo0]3 ofj9]o
argeied Folglo 0 0
Lrg=18 Lpg=18 Lpg=18

Fig. 1.1. An example of different images which produce the same cross-correlation.



Classification techniques based on feature extraction such as nearest
neighbor [14), Bayesian learning systems [15], and neural networks [16)]
also may be used to locate shapes but they are not intended to work in a
cluttered scene. They are better suited for identifying isolated objects on a
uniform background such as printed characters. In this problem the
landmarks are not usually available as bound objects. They are shapes

which are embedded throughout a cluttered image.

Shape recognition techniques based on mathematical morphology, are
ideally suited for the analysis of bound and unbound shapes. Crimmins
and Brown [17] showed how mathematical morphology could be used to
locate shapes by matching both the image and its complement. In binary
images, if the white pixels constitute the image then all the black pixels
are its complement. When searching for a donut shaped object, for
example, verifying the presence of a ring is necessary but it would not be
sufficient. It may also be necessary to verify the presence of a hole. Thus,
this shape recognition technique provides both necessary and sufficient
conditions to locate objects. In contrast, such schemes as cross-correlation

provide only necessary conditions for shape recognition.

Grey-level images are treated as three dimensional surfaces where
the grey-level is the z-coordinate. The volumetric region beneath the
surface is conmsidered the image while the region above the surface is the
complement of the image. Matching grey-level images is then a matier of

fitting a template to an image and its complement.

Shapiro et al. [18] and, Shih and Mitchell [19] describe methods
using mathematical morphology to extract primitives or parts of an object.
Objects are then recognized by analyzing the relational positions of those

primitives. However, this technique is better suited for recognizing isolated



objects where the memberships of the various primitives are easily

determined.

Maragos [20] presents a morphological equivalent to the
minimization of the mean squared error or the maximization of the
cross-correlation. He defines the morphological cross-correlation My (k) as

the sum of minima

My k)= min{ A n+k),g(n)}. (1.9)

ne W
Maximizing this function provides a good matching criterion

provided that the factor E fin+k) does not fluctuate drastically through the
ne W

image. This factor represents the DC level in the image near and around
k. It provides no local shape information but will affect My. If this factor

varies globaly, the maximizing of Mj becomes an unreliable matching

criterion.

C. Proposal

In this study, grey-scale morphological operators are used to devise
a new shape recognition algorithm to locate landmarks on 512'x 480 digital
x-ray images. The algorithm is an extension of that proposed by Crimmins
and Srown [17). The scheme is tailored to the problem at hand but kept
general so that one algorithm may be applied to locate any defined
landmark. Thus, with the help of a novel training scheme a system based
on this technique may be easily personalized to locate any set of
landmarks according to the orthodontist’s preferences. Also, by
incorporating some probability theory, the approach may circumvent some

of the rigid properties of the morphological operations, making this



technique less susceptible to noise and more accommodating to subtle

variations in skeletal topographies.

To minimize the processing time, a technique is developed to
decrease the amount of image which must be searched to find ecach
landmark. The positions of located landmarks may be used to predict or at
least narrow down the possible positions of subsequent points. If the
system is trained to remember the possible relative positions of the
landmarks, then as points are being located this information may be used

to optimize the search for subsequent points.

The developed algorithms are tested on 40 randomly selected x-rays
obtained from male and female patients ranging from 9 to 39 years of
age. To simulate realistic operating conditions, the x-rays are not screened.
These tests are performed to assess both the recognition and the progress

during training.

D. Dissertation Outline

The thesis begins with introductory chapters on cephalometrics and
mathematical morphology. These chapters serve to define the problem and
to provide a mathematical basis for the solation. Shape recognition using
mathematical morphology is discussed in chapter 4. The chapter describes
a new technique using a statistical approach together with decomposition
and training to accomodate subtle differences in skeletal topographies.
Chapter 5 examines search windows and presents a new technique for
minimizing their sizes. In the remaining chapters the shape recognition
algorithm is evaluated through a set of experiments. Recommendations for
improving the algorithm and conclusions are drawn from the experimental

results.
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II. CEPHALOMETRICS

Cephalometry is the scientific measurement of the dimensions of the
head. Cephalometrics is a tool that provides a quantitative assessment or
description of craniofacial morphology. The measurements may be
compared with norms, ideals or previous measurements of one’s sclf.
These comparisons help in the diagnosis of anomalies, monitoring of

treatments, and growth predictions.

A. History

Assessing craniofacial dimensions dates back centuries ago, though
the motivation was artistic then. During the Renaissance, for example,
Leonardo DaVinci, studied the proportions of the head, and body in an
attempt to quantify beauty. Later, anthropologists began using skull
measurements to compare and categorize ancestral human skulls. Methods
of measurements were developed that proved to be of value to
orthodontics. During the 1930’s, the use of x-ray pictures of the skull was
introduced to orthodontics and cephalometric radiography was born. Since
then a variety of analyses have been developed based on the standard
lateral radiograph of the skull. These analyses are composed of a series of
angular and linear measurements designed to provide an assessment of the
facial skeleton, the teeth, and soft tissue profile. The reference points or
landmarks used to generate these measurements are critical. The
effectiveness of an evaluation depends on an accurate definition and

localization of the landmarks.



B. The Cephalometric Radiograph

Cephalometric radiographs or cephalograms are produced using an
x-ray source, film holder and a cephalostat or head holder. The x-ray tube
source is placed 2-4 meters from the subject and the film holder is placed
on the opposite side as near to the subject as possible. This minimizes

distortions or enlargement when reproducing the projection of the skull.

For the standard lateral projection shown in Fig. 2.1 The subject is
placed with the left side towards the film. European standards place the
right side towards the film. The centre of the x-ray beam coincides with

the ear rods of the cephalostat.

The quality of the radiograph may be marred by improper

exposures. Soft tissues are more easily penetrated by the x-rays than are

Fig. 2.1. A ypical cephalogram or latcral skull x-ray.



the bony masses. Consequently, problems arise when trying to strike &
balance where both tissue types are adequately imaged. A barrier is often
placed near the front of the face to reduce the intensity of the x-rays
penetrating the soft tissues of the face. When improperly placed this

barrier sometimes interferes with imaging of the facial skeleton.

C. The Cephalometric Tracing

The cephalogram is rarely used directly in the analysis. Instead, a
tracing similar to the one shown in Fig. 2.2 is first made of the important
bony and soft tissue cutlines visible on the cephalogram. Tracings from
subsequent x-rays are superimposed and compared to monitor treatments or
assess growth. Superimposing x-rays would be nearly impossible to
analyze. Care must be taken to trace accurately through the important

landmarks whose positions are critical to the measurements.

Fig.2.2. A ccphalometric tracing of bony and soft tissue outlines,

10



D. Landmarks

The shapes of structures within the skull depend on several factors
such as age, sex, race, etc. The selection of a standard set of landmarks,
therefore, is not straightforward. Overlapping anatomical features also
present a problem., The shapes of the landmarks may differ in two x-rays
taken from the same patient. A slight shift in the orientation of the skull
when x-rays are taken may cause a shift in overlapping features. It is
throvgh experience that an observer is able to recognize a landmark and

its possible variations.

There are several kinds of landmarks wused in cephalometric

evaluations and they are described as follows:

(1) Anatomic Points — Anatomic points are small regions located on the solid
skull. Examples include; sella (S), nasion (Na) and the anterior nasal
spine (ANS).

(2)Implants - Implants are artificial markers which show up on the
radiograph. They are more clearly visible and easier to locate than
anatomic landmarks but, their positions from subject to subject are not
consistent. Studies based on implants are thus difficult and less
accurate.

(3) Extremal Points - Extremal points are characterized as falling on extrema
of curvatures. Examples include; A point (A), B point (B), and
gnathion (Gn).

(4) Intersection of Edges — These intersections are points which do not
actually exist on the skull but are the result of intersecting outlines
visible on the x-ray projection. Examples include; articulare (Ar), and
pteryomaxillary fissure (PTM).

(5) Intersection of Lines - Line intersects are constructed points based on the
intersection of projected lines. For example, the anterior point for
determining the length of mandible (APmax) is formed by dropping a
perpendicular from pogonion (Pog) to the mandibular plane.

11



Of the various types of landmarks the first four must be extracted from

the cephalogram.

Table 2.1 lists some more commonly used landmarks according to
[1] and [21]. The actual selection of landmarks used by each orthodontist
varies with personal preference and experience. Figure 2.3 and 2.4
illustrate the position and shapes of these landmarks as viewed on a

typical cephalogram and tracing.

TABLE 2.1,
REFERENCE POINTS
No. |Abbreviation Definition

1 N Nasion, The most anterior point of the nasofrontal suture in the median plane.
The skin nrasion (N') is located at the point of maximum convexily between
nose and forchead.

2 ) Sella. The sc'la point is defined as the midpoint of the hypophysial fossa. Itisa
constructed radiological point in the median plane,

3 Se Midpoint of the entrance fo the selia. This point represents the midpoint of the
line connecting the posterior clinoid process and the anterior opening of the
turcica.

4 Sn Subnasale. A skin point wherc the nasal scptum merges mesially with the

integument of the upper lip.

5 A Point A, subspinale. The decpest midline point in the curved bony outline from
the base to the alveolar process of the maxilla.

6 APMax |The anterior landmark for determining the length of the maxilla. 1t is
constructed by dropping a perpendicular from point A to the palatal plare,

7 Pr Prosthion. Alveolar rim of the maxilla; the lowest, most anterior point on the
alveolar portion of the premaxilla, between the upper central incisors.

8 Isorls] |Incisor superious. Tip of the ~rown of thc most anterior maxillary ceotral
incisor.
9 Apl Apicale . Root apex of the most anterior maxillary central incisor,

12




No. |Abbreviation Definition

10 liorls 1 |Incisor inferious. Tip of the crown of the most anierior mandibular centra
incisor,

11 Ap 1 Apicale 1. Root apex of the most anterior mandibular central incisor.

12 Id Infradentale. Alveolar rim of the mandible; the highest, most anterior point on
the alveolar process, in the median plane, between the mandibular central
incisors.

13 B Point B, supramentale. Most anterior part of the mandibular basc. It is the most
posterior point in the outer contour of the mandiblar alveolar process, in the
median planc.

14 Pog Pogonion. Most anterior point of the bony chin, in the median planc,

15 Gn Gnathion. 1t is located between the most anterior and the most inferior point of
the bony chin.

16 Go Gonion. A constructed point, the intersection of the lines tangent to the
posterior margin of the ascending ramus and the mandibular base.

17 Me Menton. 1t is the lowest point of the mandible.

18 APMan  |The anterior landmark for determining the length of the mandible. 1t is
defined as the perpendicular dropped from Pog to the mandibular plane,

19 ar Articulare. The intersection of the posterior margin of the ascending ramus and
the outer margin of the cranial base.

20 Cd Condylion, Most superior point on the head of the condyle.

21 Or Orbitale. Lowermost point of the orbit in the radiograph.

22 Soft Pog  |Soft issue Pogonion. Most anterior point of the skin of the chin in the median
plane.

23 Nose Tip of tite Nose. The most anterior point of the skin of the nose in the median
plane.

24 ANS Anterior nasal spine. The tip of the bony anterior nasal spine in the median
plane.

25 PNS Posterior nasal spine. A constructed radiological point marking the intersection

of a continuation of the antcrior wall of the pierygopalatine fossa and the floor

of the nosc. It marks the dorsal limit of the maxilla.

13
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No. |{Abbreviation Definition
26 S’ Landmark for assessing the length of the maxillary base, in the posterior
section, It is defined as a perpendicular dropped from point § 1o a line extending
the palatal planc.
27 APOcc Anterior point for the occlusal plane, A constructed point, the midpoint in the
incisor overbite in occlusion,
28 PPOcc Posterior point for the occlusal plane, The most distal point of contact between
the most posterior molars in occlusion,
29 Ba Basion. Lowcst point on the antcrior margin of the foramcn magoum in the
mcdian planc
30 Ptm Ptervgomaxillary fissure. The contour of the fissure projected onto the palatal
plang,

Fig.2.3. Commonly uscd reference landmarks as defined on the cephalogram.
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Fig. 2.4. Commonly used reference landmarks as defincd on the cephalometric tracing,

E. Refeiznce Lines

The locations of the landmarks described above form the basis for
the construction of a series of lines and planes. The lengths of some lines
provide linear measurements while the angles between others provide
angular measurements. There are three basic types of lines which can be

constructed.

(1) Lines joining two landmarks — The simplest reference lines are defined
using the locations of two located landmarks. An example is the
palata! plane formed by joining (ANS) and (PNS).

(2) Lines passing through a landmark and parallel to another defined line —
These lines are used to project linear measurements to a defined
reference line.

15



(3) Lines passing through a landmark and perpendicular to another line -

These lines are used to calculate distances from points to lines,

Table 2.2 lists some more frequently used reference lines according

to [1]. These are illustrated in Figure 2.5.

TABLE 2.2,
REFERENCE LINES
Ne. Line Definition
1 S-N Sella-nasion. Anteroposicrior cxtent of anterior cranial basc.
2 S-Ar Lateral extent of cranial basc.
3 ar-Go Length of ramus,
4 Me-Go  |Extent of mandibular base.
5 N-A Nasion - point A.
6 N-B Nasion - point B
7 N-Pr Nasion - prosthion.
8 N-Id Nasion - infradentalc.
0 N-Pog  |Nasion - pogonion,
10 N-Go Nasion - gonion ling, for analysis of the gonial angle.
11 Pal Palatal planc {ANS-PNS),
12 Occ Occlusal planc (APOcc-PPOcc).
13 5-Gn Y-axis.
14 S-Go Posterior facial height.
15 1-SN Long axis of upper incisor to SN.
16 1-Pal Long axis of upper incisor to Pal,
17 1-MP Long axis of lower incisor to mandibular planc.
18 ManBase |Extent of mandibular base (Go-Gn).

16




No. Line Definition
19 MaxBase |Extent of maxillary basc (APMax-PNS).
20 R.asc. Cd-Go length of ramus.
21 S-S’ Perpendicular [rom point S (starting from the SN linc) to point ',
22 Pn line Perpendicular to ScN, from the soft tissue nasion N! as far as Pal.
23 H line Modificd Frankfurt horizontal; parallel to the SeN line which bisccts the Pn line
from N 10 Pal (Pn/2 - FH/R.asc.).
24 EL Acsthetic Iinc. Tip of nosc - soft tissue pogonion.

4]

e
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e
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Fig. 2.5. Commonly uscd reference lines.
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F. Angular Measurements

These reference lines are used to make angular measurements of

skull geometries. Table 2.3 lists some routine angular measurements taken

according to [1]. They are described with statistical norms and variations.

Figure. 2.6 illustrates these angles on the cephalometric tracing.

TABLE 2.3.
ANGULAR MEASUREMENTS
No. Pml::g‘:: the Definition l:‘;‘::l

1 N-S-Ar  |Saddic angle 123° & 5°
2 S-Ar-Go  |Articular angle 143° + 6°
3 Ar-Go-Me |Gonial angle 128° + 7°
4 Sum Sum of sella, articular and gonial angles 394°

5 Ar-Go-N  |Go, upper gonial angle 52°-55°
6 N-Go-Me |Goz, lower gonial angle 70° - 75°
7 SNA Anlcroposterior position of maxilla g1°

8 SNB Anleroposterior position of mandible 79°

9 ANB Diffcrence between SNA and SNB 2°

10 S-N-Pr |Antcroposterior position of alvcolar part of premaxilla 84°

11 S-N-Id Anteroposierior position of alvcolar part of mandible 81°

12 Pal-MP | Angle between palatal and mandibular planc 25°

13 Pal-Occ  |Upper occlusal planc angle 11°

14 MP-Occ  [Lower occlusal planc angle 14°

15 SN-MP  |Angle between SN and mandibular plane 32°

i8



No. Points of the Definition Mean
angle value
16 Pn-Pal Angle of inclination 850
17 N-S-Gn  |(Y-axis) Anglc between SN linc and S-Gn linc, anteriorly 66°
18 1-SN Angle between upper incisor axis and SN line posteriorly 102°
19 1-Pal Angle between upper incisor axis and palatal plane, anteriorly | 70°  5°
20 1-MP Angle between lower incisor axis and mandibular plane,|  90° % 3°
posteriorly

21 ii angle Intcrincisal angle between upper and lower central incisor 135°

axcs, posteriorly

dmisded

Fig. 2.6, Commonly used angular measurcments.
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G. Linear Measurements

There are two basic types of linear measurements.

(1) Point to point — Point to point distances are simply calculated between

located points. An example is the anteroposterior extent of anterior
cranial base (S-N) measured from (S) 1o (Na).

(2) Point to line - Point to line distances are perpendicular distances from a

point to a line. An example is the distance from incisal edge 1 to
N-Pog line.

These are illustrated in Fig. 2.7.

Table 2.4 lists some of the commonly used linear measurements.

TABLE 24.
LINEAR MEASUREMENTS
No. | Distance Definition Mean value

1 S-N (SeN) Anteroposterior extent of anterior cranial base 7lmm
2 S-Ar Extent of lateral cranial base 32-35 mm
3 S-Go Posterior facial height
4 N-Me  |Anterior facial height
5 MaxBase |Extent of maxillary base, correlated with Se-N
6 ManBase |Exicnt of mandibular base, correlated with Se-N
7 R.asc. Extent of ascending ramus, correlated with SeN
8 S’-F.Ptp. |Distance from S’ to projection of the amicrior wall of the

plerygopalatinal fossa onto the palatal planc, expression for

anterposterior displacement of the maxillary basc
9 S-S Expression for deflcctions of the maxillary base 42-57mm
10 1-N-Pog |Distance from incisal edge of 1 to N-Pog line
11 | T-N-Pog |Distance from incisal cdge of 1 to N-Pog linc

20



Fig. 2.7. Commonly uscd lincar measurements.

H. Analysis

The anglular and linear measurements described are not usually
analyzed independently. Rather, measurements are compared, correlated,
normalized and combined to produce a variety of analyses These analyses
are divided into two basic groups consisting of several stages of analysis

as follows:
(1) Dento-Skeletal Analysis

(a) Analysis of facial skeleton
(b) Analysis of mandibular and maxillary base
(¢)  Dento alveolar analysis



(2) Soft-Tissue Analysis

(@) Profile analysis
(b) Lip analysis
(¢)  Tongue analysis
The generation of these analyses is a routine and tedious task.
Seldom does a subject require special consideration beyond the normal
measurements. The generation of these measurements is thus ideally suited
for automation. Orthodontists would be freed from the rigor and could

concentrate their efforts on the medical interpretation of these

measurements.
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III. MATHEMATICAL MORPHOLOGY

Mathematical morphology is an image processing approach ideally
suited for the analysis of structure and form. Its initiation by Matheron in
1964 together with work by Serra led to the formation of the Centre de
Morphologie Mathematique at the Paris School of Mines. Matheron
published a book on the mathematical basis of morphology entitled
“Random Sets and Integral Geometry” [22]. Later, Serra’s book provided
theory coupled with application examples on image analysis {23]. Since
then, mathematical morphology has been steadily gaining popularity in the
image processing community. Papers by Heijmans and Ronse [24], and
Serra [25] provide an in-depth overview of the theory. Papers by Meyer
[26]), Haralick et al. [27], and Sternberg [28] demonstrate some practical

uses of mathematical morphology to image analysis.

This chapter is an introduction to mathematical morphology intended
to provide the reader with some background of the mathematics used in
the shape recognition algorithm to be developed in the next chapter. It
describes the basic morphological operations of dilation and erosion. The
language is set theory. Sets in Euclidean 2D-space represent binary images
while sets in Euclidean 3D-space are used to represent grey-level images.

In general, the operations are defined in Euclidean N-space or EN.

A. Properties of Morphological Operators
The basic properties commonly used to describe morphological

transforms are defined as follows: (¥ represents the generic symbol of a

morphological transform)

23
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1. Increasing — ¥ is said to be increasing if, when a set X is included in Y,
the transform W(X) is also included in the transform ‘¥(Y).

Xc¥=WX) cW(Y) .

2. Extensivity or Anti-extensivity -\ is extensive if the transform of a set
includes the set.

YX)oX.

¥ is anti-extensive if the set includes the transform of itself,

YXcX.

3. Idempotence - ¥ is idempotent when applying the operator more than
once has no effect.

YY) 1=Y(X).

4. Homotopy — V¥ is homotopic wher it preserves the particle-in-hole,
hole-in-particle relationship or the homotopic tree of a bounded set.
The homotopic tree of a set has a trunk corresponding to the
background and branches corresponding to the connected components.
In other words, if boundaries between objects are lost due to the
transform then the transform is not homotopic.

5. Compatibility with Translation — Translating a set X by a vector h is
denoted X, and is defined by
Xp={x+h]|xe X}
¥ is invariant under transiation if

¥ (Xi) =¥ (X))

If ¥ depends on the origin, denoted ‘F°, then this condition no longer
holds. With the exception of a translation, it is the same to shift X by h as it
is to shift ¥ by -h. Therefore, a more general criterion known as
compatibility under translation is



WO (Xn) =1 ¥ (X) Jen

6. Compatibility with Magnification - Magnifying a set X by a scalar X is
denoted AX and is defined by

AX={xi|xe X},
¥ is invariant under magnification if
YAX) =A¥(X).

However, most transformations depend on some scale factor. A family of

transformations W1 is said to be compatible under change of scale if

‘Pa(X)=7L‘P(%).

Although the functions within this family operate at different scales, they
are performing essentially the same task and are therefore compatible.

7. Associativity — ¥ is associative if
YIW(X,Y)LZI=Y[X,WP(Y,2Z2)].
8. Commutivity - ¥ is commutative if
WX, Y)=W(Y.X).
9. Distributivity - W distributes over some operator & if
WX, &Y, Z)|=8[¥(X.YV),¥(X,Z)].

B. Dilation

Let A and B be sets in E'. The N-dimensional vectors
a=(ai, a,...,ay) and b=(by, by, ..., by) represent elements in A and B
respectively. The dilation of A by B, denoted A® B, is defined as all the

possible vector sums of elements, one from A with one from B written

A®B={a+b|acA, beB}. 3.1)
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Since vector addition is a translation, dilation may also be expressed
as the union of translations of A by the elements of B. The commutivity
of addition also permits dilation to be defined as the union of translations

of B by the elements of A. Symbolically,

ADB=HA=UB. . @.2)

be B acA
Dilation is analogous to planting ~t the points in A, seeds from
which the set B is grown. In practice the operand A is considered the
image while the operand B is referred to as the structuring element. Figure
3.1 illustrates the dilation of a binary image. In this example the set space
is the two dimensional grid. The image A is the set of all the black

pixels on the white grid.

A A&B
0 1 2 3 4 5 6 1 8 9 001 23 45 6 7. 839
0 B |
1 1
2 1 0 1 2
3 + 3
4 @ = 4
s 1 s |
] 6
7 B = {{-1,-1}, (0.0) 7
3 (1.1} ]
] 9 |
A = [(22), 24). 2.5, @7 G20, ), ABB = ((1.1), (1,3), (L4, (1,6), @,2), 2.3), @A), .5),
a5 30, 0.2, @3 74 0.9, @26, @D, 323 (3.3 34), 3.5 06, BN,
76, (1. (3.8), (4,3), (4.9, (4.6), (4.8), (6.1), (62), (6.3),

(64, (6.5), 6.,6), 7.2), 0.3) (.4, 0.5, 7.6},
(.7, (8.3), (84), (8.5). (3.6), (8.7), (B.8)}

Fig. 3.1. Dilation of a binary image.



Since dilation incorporates vector addition, it exhibits associative,
commutative, and distributive properties similar to that of addition. These
and other properties of dilation are summarized in Table 3.1. Of particular
interest is the associative and distributive properties. They permit dilations
by large structuring elements to be computed as successive dilations and/or
unions of dilations, by smailer structuring elements. For example, if a
structuring element D can be expressed as the dilation of two smaller

elements B and C, then the dilation of A by D may be evaluated by

ADD=A®(BOC)=(A®B)®C. 3.3
TABLE 3.1.
PROPERTIES OF DILATION
Property Conditions Description
Increasing Yes ACB=A®DCA®B
Extensive iff B contains A®BDA
the origin
Idempotent No —
Preserve Homotopy No —
Translational Invariance Yes A®B,=(A®B);
Compatibility with family Y,(A)=A@AB
Magnification
Associative Yes A®(B®C)=(ADB)®C
Commutative Yes ADB=BDA
Distributive overunions | 4@ (B UC)=(A®B) U(ADC)
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This relation may be extended to k structuring elements in what is called

the chain rule for difation written

AD(B1®D---@®By)=(--(ASB)D - --BB;). (3.4)

From the distributive property, if a structuring element D can be
expressed as the union of two smaller elements B and C, then the dilation

of A by D may be evaluated by
ABD=A®(BUC)=(ADB) U (ADC). (3.5)

Equations (3.4) and (3.5) are used to decompose a dilation by a
large structuring element into several smaller dilations. These techniques
permit existing neighborhood connected image processors such as the
Cytocomputer [29] to implement dilations larger than their neighborhood
size. Papers by Zhuang and Haralick [30], and Pitas and Venetsanopoulos
[31] are strictly devoted to the problem of morphological structuring
element decomposition. However, not all structuring elements can be

decomposed into a sequence of neighborhood dilations.

C. Erosion

The dual of dilation is erosion. The erosion of A by B, denoted
A©B, is defined as all the points ¢ where the translates Bc are entirely

contained in the image or

A©B={c|B.cA}. (3.6)

Erosion is also expressed as the intersection of translations of A by

the elements -b where be B. Symbolically,

A©B= Ay, GD
beB
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Essentially, the structuring element is dragged across the image and
only those points where the translated structuring element fits in the image

remain. Fig. 3.2 illustrates the erosion of a binary image.

Erosion exhibits properties similar to those of dilation. These are
summarized in Table 3.2. The associative and distributive properties again
permit erosions by large structuring elements to be computed as successive
erosions andfor intersections of erosions by smaller structuring elements.
For example, if a structuring element D can be expressed as the dilation
of two smaller elements B and C, then the erosion of A by D may be

evaluated by

ASD=AS(B®C)=(AOB)OC. (3.8)
A A®B
0 1 2 3 4 5 6 71 8 9
0 B of |
1 1
2 '
3 3
4 = 4
5 3
6 &
? B =10, 0, 7
1 {1.0)) ]
9 9
A= [(L1), (L4), (L6), (1L, (1.8), 2,1), e @.6), (2T), AGB = {(2,1), (24, (2.6), @D, 2.8), B.6),
(2.8), (1), 3.4), (3.6, 3.7, (.K), (), (1.3), (46}, @.7), (38), (6), (7). (48), (56),
(A7), (4.8), 5.2 (5.3), (5.6), (5.7), (5.8), (6.1}, (6), 5.7, (58), 66) (67, (68), (L)
(6.6), 6,7, (6.8, (7,1), (7.4), (7,6), (0.}, (.8), &.1), (7.4, (.6). 11, (7.8))
(8.4), (86), 8.7, B.8))
Fig. 3.2. Erosion of 3 binary image.
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TABLE 3.2

PROPERTIES OF EROSION

Property Conditions Description
Increasing Yes AcB=>A@DcAGSE
Anti-extensive iff B contains AOBCA
the origin
Idempotent No —
Preserve Homotopy No —
Translational Invariance Yes A:@B=(A©B )
ACB;=(A@B )
Compatibility with family Y (A)=AOAB
Magpnification
Associative with dilation AG(BB®C)=(AO@B)OC
Commutative No ASB#BGA
Distributive over unions

AS(BUC)=(AGB)YM(AGC)
(AUuB)eC=(AeC)N(BOC(C)

the chain rule for erosion, written

This relation may be extended to k structuring elements in what is called

AS(B1® - - ®B,)=(--(A©B)©---OB8:).

Likewise, if a structuring element D can be expressed as the union

evaluated by

of two smaller elements B and C, then the erosion of A by D may be

AOD=A0(BUC)=(A0B )" (A C(C).
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D. Dilation Erosion Duality Theorem

Eroding an image by a structuring element is equivalent to dilating
the background of the image by the reflection of the structuring element.
This is called the dilation erosion duality theorem and can be written as

follows;

v (3.11)
(AGB)Y=A"OB,

where A° denotes the complement of a set ,

A={xe E' | x¢ A},
and B denotes the reflection of a set and is defined by

B={-b| be B}

Figure 3.3 illustrates the duality theorem by eroding and dilating a

binary image and its background respectively.

E. Grey-Scale Morphology

Grey-level images may be represented as sets on the 3-dimensional
Euclidean grid E’. The horizontal grid represents the spatial x,y-coordinates
while the vertical z-coordinate represents the grey-level value or the height
of the image surface. The set of image points is a thin sheet or surface
which is expressed as a function f(x,y) of the spatial coordinates. In
mathematical morphology, it is the umbra or shadow of this surface which
is operated on. The umbra of a surface is illustrated in Fig. 3.4. It is the

surface, and all the points below the surface defined by

UlRxy)1={z | zsfxp]}.

K}

A ELERICTRIVERVIV SRV NN



T B

A '~

v
A= -

v
(A©B) =A"®B

Fig. 3.3. Hlustration of the dilation erosion duality theorem. At the top, the image A is croded by the
structuring element B, At the botiom the complement of A is dilaled by the reflection of 8.

grey-level surface grey-level surface and its umbra

all points below the surface

Fig. 3.4. The cross-section of a grey-leve! surface and the umbra of the surface.
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The morphological transforms of dilation and erosion have been
expressed as unions and intersections of sets. The union and intersection
of umbrae are also umbrae. The union of two umbrae is the tallest of the

two described by
Ulx1 U y]=Ul max(xy)]. (3.12)

The intersection of two umbrae occurs over the shortest of the two.

Symbolically
Ulx1 A Uly]=U[ min(xy)]. (3.13)

Dilating or eroding an umbra by a structuring element also yields

an umbra. That is

UIA@B|=UlAlL. (3.14)
bel

UIA©B = UlAls. (3.15)
bel

The translation of the umbra of an image point A(x,y) by the point
b=(i,j,B(ij)) is the umbra of the translated point A(x,y)s. The (x¥)
coordinates are translated by (i,j) while the grey-level value A(x,y) is

translated by the grey-level value B(i,j). Thus, the translation of an umbra

is expressed mathematically as
Ul A(xy) b= Ul AQx+iy+i )+ B(iy)], (3.16)
Ul A(x,y ) 1= Ul A(x=iy=j ) — B(iy)] . (3.17)

Hence, the resultant at the coordinate (x,y) for the dilation or erosion of
umbrae is computed as the union or intersection of image points translated

from a distance (i,j). Symbolically,
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UL(A®B)(xy)]1=\ ULA(x, y=) +B(i,j)), (3.18)

i,je B
UL(A©B)(x,y) )= ULACx+H, y4j) = B(i j). (3.19)
Lje 8

Replacing the union of umbrae with the max operator, and the

intersect of umbrae with the min operator yields

Ul(A®B)(x,y)]=max U A(x4, y-j )+ B(i,j)l, (3:20
i,je B

UL (A©B)(x,y)]=min U A(x+, y+j )= B(i,j)]. (3.21)
ije B

Eliminating the umbra transform to express dilation and erosion in

terms of the surface of the image yields

(A @ B )(x,y) = max [ A(e-i.y—~)) + B(ij) ] , (3.22)
L]

(A © B)(xy)=min [ AQx+iyH) — B(ij) ] . (3.23)
Y]

Thus the erosion and dilation of grey-level images is reduced to
min and max operations. The dilation and erosion of grey-level images is
illustrated in Figures 3.5 and 3.6. The figures show a single scan line or

cross section of an image being operated on.

Note that the umbra transform is often assumed when dealing with
grey-level images. For example, when one specifies a grey-level image A
and its complement A°, it is understood that the complement is the area
above the surface even though the umbra transform is not specified.
Otherwise, by definition the complement A° includes all the points above

and below the thin surface A.



-

grey-level
structuring element

grey-level image

Fig. 3.5. Cross-sectional view of grey-level dilation.

-
—1
A
o

grey-level
structuring element

grey-level image

Fig. 3.6. Cross-sectional view of grey-level erosion.

35

1*sulting dilation

resulting erosion



IV. SHAPE RECOGNITION
ALGORITHM

At first glance, the morphological operation of erosion seems to be
a good shape recognition tool. After all, the operation is used to find the
points in an image where the structuring element is contained. Though
erosion alone provides a necessary condition for shape detection it is not
sufficient. In Fig. 4.1 the structuring element shown can either fit inside

both the disk or the square though their shapes are different.

result

shape

Fig.4.1. The erosion of a binary image by a small disk. Notice that the result does not depend on the shape
of the structuring ¢lement.
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A. The Generic Shape Recognition Algorithm

A stricter requirement for shape recognition is that the background
of the structuring element also be present. This is the basis for the
generic shape recognition algorithm introduced by Crimmins and Brown
[17]. They satisfied both the foreground and background requirement with

the following theorem.

Theorem.
The shape B defined in a window W occurs in the image A at the set
locations C such that

C=(A@B)m(A°eB‘), @4.1)
where
B°=W-B (4.2)

The theorem is illustrated with the binary image of Fig. 4.2.

foreground
points which
contain both the
foreground and
background
background

Fig. 4.2. The generic shape recognition algorithm applicd to a binary image.
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If the shape has variaiions or one wishes to locate rotated views of
the object, then the shape recognition algorithm may be expanded to
incorporate a family of shapes. Let By describe the structuring elements
where ye I' is the family of variations of B. The shape B may then be

found in an image A at the points C where

C=UI(A®B)N (A OB)]. @3)
teT

To adapt the recognition scheme of Crimons and Brown to the
problem at hand, various changes and extensions had to be made. This
work led to the new technique for shape recognition which is presented

next.

1. The Grev-level Shape R ition Algoritl

The extension to grey-level images requires again the use of the
umbra transform. Figure 4.3 shows a vertical plot of one scan line through
a grey-level image and structuring element. A©B is traced by following
the tip of B as B is dragged beneath the surface of A. A“©B° is traced
by dragging B° above the surface of A. The intersection of the two
erosions occurs where the lines representing the two erosions meet.
However, if it is known that there is only one target in the scene, which
is the case in this application, then the most likely location of B in A is
where A©B is closest to A°©B°. Letting C(x,y) represent the shape
recognition error function, then the most likely position of B in A is

found at the minimum in C where C is the subtraction

C(x,y)=(A©B )x,y)-(A©B)xYy). (4.4)

If more than one target was present in the scene, their positions

could be estimated by considering all the minima below a threshold.
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scan A® A O B

locations

Fig. 4.3. The generic shape recognition algorithm applicd 10 a cross section of a grey-level image.

Note again that for grey-level images the complements A° and B°
are understood to be the complements of the umbrae Ul4] and U[B]
respectively.

The grey-level erosion A©B has been derived in equation (3.23).
The grey-level erosion A°©B° is derived in a similar manner. From the

dilation erosion duality theorem,

v (4.5)
(U[ATOU[BIY=U[A]®U[BY.

From the definition of dilation

v (4.6)
U[A1®U[BY=UiAk.

be UBY
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Reflecting the complement of the umbra of B is equivalent to taking the

umbra of the reflection of B or

U[VB]°=U[E].

The union of U[A(x,y)] translated by the points in U[B(i,j)] overlap
and are included in U[A(x,y)] translated by the surface point B(i,j).

Therefore, the umbra transform may be removed from the membership of

the points b such that
UL(A OB 1= UAL=U UlALs. @7
be ; be B

This equation resembles the definition of erosion except the union operator
is in place of the intersect. Substituting the union operator for the

intersect operator in equation (3.19) leads to

UL(A°©B° ) (x,y) 1= UL A(a+i, y4 ) = B(1,/) ] . (4.8)

ij
The union operator may be replaced by the max operator, such that
Ul (A°© B )‘(x,y)]=ma_xU[A(x+£.y+j)-B(i.j)l 4.9)
i
Since the surface of U[A°©B°] is the same as the surface of
UL (A°© B,

(A°© B°)( %, y) =max[ A(x+, ) = B(irj) ). “.10)
W]

Substituting this result and the grey-level equation for erosion into
equation (4.4) yields the following grey-level shap: recognition error

function:

C(x, y ) =max| A(x+, y+j ) = B(i, j) 1 — min[ AQx+, y+j) =~ B(4, /) ]. (4.11)

bt )
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The following observation leads to an important modification to the
algorithm. The operations A © B and A® © B® are very similar and
differ only in that one uses the minimum while the other uses the
maximum. Hence, the shape recognition algorithm which subtracts these
two results, computes the max-min or the spread in the differences
between the structuring element B and the window in the image A that B
is overlapping during the scan. A problem with this algorithm is its
susceptibility to noise. The problem is illustrated in Fig. 4.4. The extreme
nature of using max and min operators causes the target to be missed,
even though only one pixel is in error. The solution is to replace the
max-min operation with a statistically more accurate representation of the

spread. Experimentally, the standard deviation was found to provide such a

— .scan A°

A single noise spike
causes a large gap in
the erosions cven
though the shape is
clearly present in the
image.

scan A

Fig. 4.4. The generic shape recognition algorithm applicd to a corrupted image.
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N

representation. Then the shape recognition error function C(x,y), may be

calculated from
C(x,y)=STD[ A(x+i, y+j)—B(i.j) 1, (4.12)
ij

where STD denotes the standard deviation of a list of numbers and is

calculated using

STD[.x||x2| ces ,xn]=

'\12).%—(24';)2 4.13)
o .

The shape recognition error function calculated using equation (4.12)
was found through experimentation to have some important advantages
over that calculated using equation (4.11). First, it is less susceptible to
noise spikes, which occur on cephalograms as scratches. Secondly, and
more importantly, it provides room for minor variations in the shapes
being located. If variations do occur, and the nature of this problem
suggests that they will, then the statistical nature of equation (4.12) will

provide a more confident result than would equation (4.11).

2. Decomposition

The morphological shape recognition algorithm is not invariant to
changes in scale and for precise shape recognition it should not be so.
However, craniofacial landmarks are not precise and their sizes could vary
considerably from patient to patient. One method of dealing with size
differences is to decompose landmarks into small simple shapes. A
complicated shape for which the algorithm is sensitive to scale may be
broken down into smaller simpler shapes for which the algorithm is not as
sensitive under scale differences. Figure 4.5a shows a shape which is
located despite its size. In Fig. 4.5b the slightly more complex shape will

not be located if it is a different size from the structuring element. Yet, if
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@ ()

Fig.4.5. An example of a shape which for varying sizes will (a) not pose a problem to the shape
recognition algorithm, and (b) will be difficult to find with the shape recognition algorithm.

this shape was divided in two, then the separate halves could each be

located despite the object size.

If a landmark is decomposed into several pieces or structuring
elements, a method is required which combines the search results of each
structuring element so that the minima in the separate shape recognition
error functions overlap at the landmark centre. From the definition of
erosion, the result from eroding A with the shape B will be translated to
the defined origin of B. The result from the shape recognition error
function, which is computed from erosions, will also be shifted to the
origin of structuring elements. Thus the minima from more than one error
function can be made to overlap at the landmark position by defining the

origin of each structuring element to be the landmark’s position.
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Assume for the moment that the landmark is always of the same
size. If the centre of the landmark is assigned as the origin for all the
defining structuring elements, then their respective search minima will
overlap at the landmark position. Let Bx denote the kih of n defining
structuring elements for a landmark. Then the landmark location is found

at the minimum of Cr where

n (4.14)
Crix,y)= ZS’iI‘jD[ A(x+, y+j ) —B(i,J) 1.

k=l

If the landmark in the image being searched is of a different size
from that defined by the structuring elements, then the minima will not
overlap. This is shown in Fig 4.6. In this tracing of the landmark sella, 3
structuring elements have been defined. The figure shows how the origins
of the structuring elements overlap when the landmark is of the same size
but do not overlap otherwise. What is needed is a more relaxed definition

of the origins of the structuring elements.

Instead of defining a structuring element’s origin as a point, assign
a probability distribution to indicate the possible positions of the origin, A
probability distribution may be trained to represent the location of the
landmark centre with respect to each structuring element. Figure 4.7
illustrates how replacing the point origins with distributions allows the

minima to overlap.

The idea demonstrated with the line drawings may be extended to
grey-level images. Let L; denote the location probability distribution of
the origin of Bi: From here on Lx will be called the location distribution.
Let Cx denote the shape recognition error function associated with the kth
structuring element. The minimum or valley in C. must be altered so that

its shape is similar to that of L. Using mathematical morphology, which



(a)

=
o

(b)

Fig.4.6. A uacing of the landmark sella (a) decomposed into 3 structuring elements, and (b) the locations
of these structuring clements on a larger version of the tandmark.

e

WA

(@

(®)

Fig.4.7. Scarch results overlap in (a), and (b) when the point origins are replaced by probability
distributions.
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is ideally suited for dealing with shapes, this is done by dilaiing Ck by a
scaled and inverted L: This is analogous to a dredging operation where a
shovel with the shape of L; enlarges the trenches and valleys in Ci but
never deepens them. Figure 4.8 illustrates how the location distributions
are used to dredge the search results from two structuring elements such

that their minimums overlap.

Let Di: denote the dredged shape recognition error function.

Mathematically, D is evaluated by dilating Ci by the shape of L using

D=Ci® L. (4.15)

v

where the inversion L, differs from the reflection L, in that only the

grey-level value is reflected. The spacial coordinates remain untouched.

structuring
clements

image

location
#1 distributions

#2

shape recognilion
crror functions

dredged

combined
results

—

minimum

Fig.4.8. Shape recognition applied to a grey-level landmark consisting of two structuring elements,
Dredging is used to shape the minimums such that when combined they overlap.
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To maximize its effect, Lt is scaled such that, 1-ny <L x,y)<0
where ng is the number of available grey-levels in the digitized x-ray
images (in this case n;=256). There are two reasons for this scaling. First,
by shifting the distribution such that Ly x,y) <0, the origin of Ly is being
shifted to the height of its peak. Consequently, when the image Ci is
dilated by L the tip which is the origin will never affect points below it
and thus the minimum will not be altered. Remember, the purpose of this
dredging iz to shape the valleys, not to make them deeper. Also, the
values of the minima may prove of some use in assessing the strength of
the find. Secondly, by altering the height of Li, it is brought to scale
with the error function Ci Operating at the same scale maximizes the
contrasting differences between shapes. For example, if -1 <Ly x, y)<0 and
~-255<Ci(x,y) <0 then operating on Cix by a different Ly's would not be

distinguishable.

The dredging operation expressed for grey-level images may be

derived as follows. From the dilation erosion duality theorem

v 4.16
Di=Ci®Li=(CO L), @19
v
where I is Ly reflected in spatial coordinates only. That is
4.17)

Li={l;| lj=L=-D}

Since the surface of an image and its complement are the same, the
equation for grey-level erosion may be modified for the spatially reflected

structuring element to yield the grey-level dredging operation

Dy x,y )= min [Cy x~i, yj) = Lui,j) ] (4.18)
llJ
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The dredged error functions from more than one structuring element
may then be summed to produce the combined error function from which
the landmark location is extracted. Denoiing Dr as the sum of the dredged

error functions, the landmark location is found at the minimum where

. (4.19)
Di{xy)=),Duxy).
k=1

3. Summary

This new general shape recognition algorithm may be summarized as

follows:

Let Bx represent the kih of n structuring elements defining a landmark. Let Lk be the
probability distribution representing the probable location of the origin with respect 10
the kth structuring element.
The most likely location of the shape B in the image A is found at the
minimum in the shape recognition crror function Dt computed as the
sum of the dredged error functions D. Symbolically,

n

Di(x.y)=Y,Dixy).
k=1

where Di is computed using

Dy x, y }y=min [C x~i, y~f ) = Li( i) ]+
L)

and Ci is thc shape recognition function calculated from the kih
structuring clement using

Ci x,y) = STDLACx#i, i)~ BK i, 1.
L)

4. Locatine the Mini

The most likely location of the shape B in A is found by locating
the minimum in the shape recognition error function Dr. When dealing
with digital images, the minimum may not always be single valued or as

shown in Fig. 4.9, it may not represent the centre of the valley. A more
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centre of gl;cv:l);] o‘l'i valley with __l |_ absolute minimum

Fig.4.9. Problems with locating the minimum in a digital image.

reliable method for determining the location of the minimum may be
developed by using the centre of gravity. If one could imagine filling the
valley with water up to a depth d, then the spatial centre of gravity of
this body of water is a good representation for location of the minimum.
The centre of gravity of a valley in a digital image may be found using

the following algorithm:

Let (Xmin,ymin) designate the location of the centre of gravity of the minimum with a
depth d.

1. Set d to some arbitrary value greater than 1, but not too large to avoid
including points outside the local minimum in the computation.

2. Search for the value of the minimum in C
min = C(0,0)
Scan all the points C(x,y) in C
{
if (C(x,y} < min)

{
min = C(x.y)

}
}
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3. Compute the centre of gravity of the valley up to a depth d

Xsum =0
Ysum = 0
n=0
Scan all the points C(x,y) in C
{
if (min < C(x,y) < (min +d))
{

Xsum = Xsum + X (min + d - C(x,y)) “weighted sum of x-coordinate”
Ysum = Ysum + y (min + d - C(x,y)) “weighted sum of y-coordinate”
n=n+(min+d-C(xy)) “volume ofvalley”
}

}

Xmin = Xsum/n

Ymin = Ysum/D

This algorithm assumes one global minimum. If there is more than
one valley with points within the depth d of the global minimum, then
those points may cause the centre of gravity to be located somewhere
between the two local minimums. This effect may prove useful, though, if
the dredging operation does not force the minima from separate shape
recognition error functions to overlap completely. In such a situation the
combined error functions may have neighboring local minima. It is more
desirable then to select a position which is somewhere in between the

minima than to select a location from only one of them.

5. Example

Using the landmark sella as an example, the following figures
demonstrate the operation of this shape recognition algorithm. Sella is
defined as the midpoint of the hypophysial fossa and is shown in Fig.
4.10. The landmark is shown decomposed into 3 structuring elements.
Figure 4.11 shows the x-ray to be searched and the window to which the

algorithm is to be applied. Figures 4.12 — 4.16 show the computed shape
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A Flenen

Fig. 4.11. An x-ray to be processed and the scarch window for locating sclla.
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Fig. 4.13. The 'shapc recognition crror function when scarching with the second structuring clement.
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Fig. 4.14, The combined results from the first and second structuring clemenis.

Fig. 4.15. The shape recognition error function when scarching with the third structuring clement.

AR



Fig. 4.17. The position of sella located at the minimum in the combined crror function.
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recognition error functions for each structuring element and the combined

result. The minimum is located in Fig. 4.17.

B. Training

Training is required to define the structuring elements and their
origins’ location probability distributions. The procedure requires training
data from x-rays with known landmark and structuring eiement locations.
Supplying these positions by hand would be time consuming and prone to
human -error. Instead, the shape recognition algorithm is used in localized
searches to pinpoint the positions of individual structuring elements.
Training data can then be extracted automatically from a newly processed

x-ray whose landmarks have been located and verified.

Let the vector (X y:) denote the originally defined position of the
kth structuring element with respect to the landmark’s defined position.
Given a newly processed x-ray with the ih landmark positioned at
(pxipyi), define the search window centre (swxy swy) for the kik

structuring element at

SWXg = pXi + Xi (4.20)

SWye=pyi+ Ve
The search window size is set to the size of the maintained location
distribution. There is no need to search beyond this region because even if
a structuring element was found there, the maintained location distribution

is not large enough to represent that find.

The shape recognition algorithm is applied to this window to locate
auwtomatically the ki structuring element. The procedure is illustrated in
Fig. 4.18. Part (a) of the figure shows the located position of the
landmark sella. In part (b) search windows are assigned to locate the

structuring elements. In part (c) the shape recognition algorithm has
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Fig. 4.18. Training the landmark sclla by (a) assigned scarch windows for finding the structuring elements,
(b) locating the positions of the structuring clements, (c) extracting training data from the located
positions, and (d) using the differcnce in the located positions from the defined positions o update the
location distribution.

located the structuring elements. If during a search the minimum falls on
the boundary of the search window, there is a strong possibility that the
siructuring element was not in the search window. In this case, the
training data should be ignored unless a larger location distribution is
used. Finally part (d) shows the data taken for training. The procedure is

summarized in the flow chart of Fig. 4.19.

I Updating the Structuring EX

The exact shape of a structuring element will never be identical
from x-ray to x-ray. To provide a balanced and equal representation for
all x-rays, the structuring elements are trained using a cumulative average.
Training data is extracted from each new x-ray as it is processed. First,
the landmarks are located and their positions verified. Then the locations

of the structuring elements are located automatically as described

56



Enter Training

train new landmark
k=1

locate krh structuring clement

is location on
border of scarch window
}

yes

train structuring clement

train location distribution

no

?

no

done all landmarks
?

done all structuring elements

cxit training

Fig. 4.19. Structuring clement training procedure.

57



previously. Training data is then extracted from the x-ray at the found

positions.

Let B} represent the kit defined structuring element of a landmark
which has been trained N times. Let B} represent the new training sample

taken from the newly processed x-ray. Then the structuring element is

adjusted using.

, . 1 - , 4.21
B, )= [N B + B @20
if BY is stored as a digital image with n, grey-levels, then the

training will not change BY when N>(ng-1). Training is no longer

necessary beyond this point.

2. Updating the Location Distribution

The location distribution is trained to reflect the relative position of
the structuring element with respect to the landmark centre. The fixed
vector (x y:) defines the initially assigned position of the structuring
element. The distribution L), centered at a distance (—xx,—yx) from the ki
structuring element, is trained to represent the probable location of the
landmark when being located using that structuring element. Initially, L is
assumed to be Gaussian shaped and centred at (—xi—y:). During training
this distribution is updated by averaging Gaussian distributions with centres
dictated by the training x-rays. Let (=% —-yt) be the relative position of
the ki structuring element on the training x-ray. The distribution, stored
as an nxm array, is updated by

N, (i+lt'llt‘%)l+(.i+.‘h"yll"'%)z] (4-22)
N LG j) +ex e ]

LN+I .'. - 1
e (L)) N+1
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The Gaussian is used instead of a spike for the reasons explained
next. Figure 4.20 shows how averaging Gaussian humps leads to a smooth
distribution faster than if averaging spikes. For a 20x20 location
distribution there are 400 possible locations to be trained. If these points
were i-ained one at a time by averaging spikes, it would take over 400
x-rays before each point was adequately represented. By averaging
Gaussians instead, every pixel is adjusted with each training x-ray. The
resulting distribution is smooth and well representative after only a few
(10-20) x-rays.

3. Example

Again, the landmark sella is used as an example, this time to
demonstratc the automatic training algorithm. The Ilocated and verified
position of the landmark on an x-ray to be used as training data is shown
in Fig. 4.21. Figures 4.22, 4.23 and 4.24 show the computed shape
recognition error functions for locating each of the 3 structuring elements

in the vicinity of the landmark.

b +

Fig. 4.20. Training the location distribution by averuying, (a) spikes and, (b) Gaussian distributions.
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Fig. 4.21. The located and verified position of sclla on an x-ray 1o be used for training.

Fig. 4.22. The scarch results from the automatic training algorithm as it finds the first structuring clement.



Fig. 4,23. The search results from the ~utomatic training algoritim as it finds the second structuring element.

|
Fig. 4.24. The scarch results from the automatic training algorithm as it finds the third structuring element.
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V.SEARCH WINDOWS

Search window sizes are minimized to speed up the scarch and
reduce the possible detection of false targets. This is done with a
combination of training and removing of translational, rotational, and size

differences between x-rays during the locating process.

Each x-ray differs somewhat in size, placement and tilt. There are
obvious shape differences as well, but the mentioned transformations may
be easily compensated for and removed from the effective search space. In
effect, as points are being located, the positions of subsequent landmarks
are more accurately predicted. Thus the required scarch window  sizes
decrease from landmark to landmark. Due 10 the nature of some
landmarks, this reduction in search window size is not consistent. For
example, the tips of the incisors are much more capable of moving than
the bridge of the nose. Therefore, it should be reasonable to expect
larger search window for locating the incisors after having located the
bridge of the nose. Even so, the required search window sizes will lways

be smaller with translational, rotational and size differences removed.

Figure 5.1 demonstrates how the defined search windows are
transformed so that the implemented search windows are as close to the
landmark positions as possible. The reference g-ray in part (a) of the
figure shows the expected positions of nasion and pogonion with respect
to sella. Parts (b) and (d) show the large window sizes which would be
required to locate nasion and pogonion. In parts (c) and (€) the required
window sizes have been drastically reduced by removing the translational,

rotational and size difference beiween the .reference x-ray and the target
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search using located landmarks to
untransformed search transform reference definitions onto
the target x-ray

" 3oy

()
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Fig. 5.1. Transforming defincd scarch windows onto the target x-ray. (a) Reference x-ray. (b)Required
scarch window 1o find Na. (c) Require search window to find Na using S to remove translational
difference. (d) Required scarch window to find Pog. (¢) Required search window to find Pog using §
and Na (o remaove translational, rotational and size differences.
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x-ray. This was done by using the previously located position of sella to
translate the window cenires and using the second located landmark nasion

to estimate the rotational and size differences.

Note that what has been shown is that the required window sizes
will be smaller if translational, rotational, and size differences are
compensated for. To make use of this idea two separate steps are required.
First, a technique mus: be developed which compensates for and removes
these transformations during the search. The technique should make use of
located points to estimate the transformational differences between a
trained reference x-ray and the x-ray being processed. Second, a training
method needs to be developed for learning the smaller required window
sizes and maintaining a definition of them with respect to the reference
x-ray. First, consider the problem of estimating the tr2asformational

differences between the reference x-ray and the x-ray being processed.

A. Estimation of Translational, Rotational and Size Differences

Let (wx,wy) and (wxs, wys) denote the defined window centre and
size for the irh point. These are initially defined on the reference x-ray.
They are then trained to represent subsequently processed x-rays. Let
(px,py;) denote the position of the itk landmark on the x-ray being
processed. Let (swx,swy) and (swxs,swys) denote the search window

centre and size used to locate the position of the irh landmark on the

x-ray being processed.

Denote the transformation T as a [ 2x1] translation matrix and R as
a [2x2] square transformation which performs rotations and scaling. It is
not necessary to maintain a separate [2x2] rotation matrix and [2x2}

scaling matrix since the two may be concatenated using matrix

multiplication. When locating the first landmark neither T nor R is known.



Conscquently, the first search window cannot be minimized during training
and thus must be large enough to account for these possible
rransformational differences between x-ray images. The location of the first
point provides the translation matrix T. The elements of the [2x2] matrix
R may be estimated one column at & time usinz the method of least
squared erroi, but not until 2 more landmarks have been found. The
positions of two additional landmarks is the minimum amount of data
necessary to solve for 2 unknowns in the least squares fit. The procedure

is summarized in the following algorithm:
1. initialize the rolation matrix to the Identity matrix,
R=1
2. Sct i=0. Sct the scarch window centre and size for the Qi point.

SWX() = WXQ  SWXS0 = WXS0
SWY)= WY  SWYSO = WyS0

3. Find the location of the point (pao, p) ). Adjust the translation matrix
T such that this location is the origin of the scarch space.

T=| P
py
4. i=i+ .

Locatc the next point as follows:

5. Calculate the search window centre and size using;
ML WX[ — WX
g WHTWO
WY Wi — Wy

Swxsi | _ | wasi
swysi | | wysi |
6. Apply the shape recognition algorithm to find the location of the itk
point (px, py).

7. If (i22) adjust the rotation/scaling matrix R using lcast squares.
ldcally, the landmark position would be at the transformed window

centre,
PXi=PX0 [ _ | Wxi=—wx0
pyi = pyo wyi—wyo |’

65

VVVVVUV.ITIAL TAL AR U UL T ]



Let

WY — W0 Wi — wan
W2 = WA WA — g

wi= .
WXi—WX0 WY —Wy0
PX1—pxo  pxi—pxo
PX2= X0 pX2—pxi

pT=l . :

PXi—pxo  pyi—pyo

Then R is solved using least squares or,

wiwrT=wlp
8. If (i < number of points) go to 4, clsc stop.

This algorithm describes how to estimate the transformuaional
differences between the reference x-ray containing the seirch window
definitions and the x-ray being processed. What is required to complete
this idea is a training scheme that will figure out the required window

sizes when using this scheme.

B. Window Training

Similar to the way the defined search windcw centres and sizes
were transformed from the reference x-ray onto the x-ray being processed
using the estimated transformation matrix R, the iocated landmark positions
ma. be transformed back onto the reference x-ray for training using the
inverse transform R’'. It is through this inverse transformation that the
translational, rotational and size differences are remnoved and the window
sizes are minimized. The search window centres are trained by avcraging
the transformed positions of the located landmarks. The window sizes are
trained by calculating the minimum required size from the distance
between the defined window centre and the located landmark position. The

window sizes are initially set to some arbitrary value. Averaging
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subsequent minimum required sizes allows the window size to shrink or be
minimized. If a required window size should ever be greater than the
currently defined size, then that size must take precedent to ensure that
the landmarks fall within the sear:h windows in future x-rays. The search

windows are adjusted according to the feilowing algorithm.

Let N be the number of x-rays trained.

I. Seti=0.

2. Usec the first landmark location as training data.
wxh = pxo
wybh = pyo .

The window centre (wx‘.N, wy’.'v) is adjusted using a cumulative average
as follows;

+1_Nw.x};'v+wxf
N+1

A i
e _Nwl+wh

N+1

WX

The scarch window size (wsx?’. .'.'sy‘:'v) is adjustcd by first computing
the minimum required window size (wsxi, wsyl) using
wixd = | i = wid |+ wisx®
wiyl = Lwyi — wyt ¥
yi =l wyi = wyi |+ wsy

where (wsx®, wsy') is an arbitrary safety margin. The sizes arc then
adjusted as follows;
if (wsxbws,\{y ) “expund’
ws = wadk,
clse  “contract”

- N wsdl + wsxd
- N+1

if (wsyt>wsyl ) “expand”
wsyl Tt = wsyt,

else  “conmtract”
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Nel N w.\'yfv +wnyh
wayp =,
N+1i

5. Train the next point, i=i+1,
6. If (i > number of points) stop.

7. Transform the landmark location 1o remove the translational,
rotational and size differcnces. The transformed points are calculated

by
wx} _ | primpxo | [ o
wyt pyi—pyo | [ wyo [’

where the transformation matrix R is estimated using least squares as
described in the previous algorithm. The matrix R must be estimated
using only the landmark locations before the ith point. The
transformations must be applicd consistently during the scarch and
during training in order for the training to be effective.

8. Goo 2.
This completes the search window minimization technique. The
transformation matrix R which is estimated in the first algorithm may be

also put to use in the shape recognition algorithm.

C. Transforming the Structuring Element Positions

For each landmark, the kit structuring element is given a fixed
vector (X, ye) to define its position about the landmark and to define the
position of the location distribution Lk Since these landmark and
structuring element definitions are maintained on the same reference x-ray
as are the window definitions, the estimated transformation R may be also
applied to the landmark definitions. Any estimated rotational and scale
differences between the reference x-ray and the x-ray being processed may

be removed from the landmark definitions to some extent by transforming

the fixed vector (X, yi). This vector may be transformed by
03]
Yk bl
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This transformed vector may be applied both during the application
of the shape recognition algorithm and during the structuring element
training. Applying it during the training may produce slightly sharper

location distributions with the transformational differences removed.
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VI. EXPERIMENTAL RESULTS

The desired outcome of this research is a complete cephalometrics
workstation. The minimum hardware requirements for the system are a
personal computer, a frame grabber, camera, and backlight or equivalent
for digitizing the cephalograms, and a graphics display capable of
displaying 512x480 digital 256 grey-level images. Preferably, the
developed software should be hardware independent for easy
transportability. To be competitive, the system must be able to provide an
error free analysis of an x-ray within approximately 10 minutes. Current
systems using digitizing tablets rcquire about 10 minutes to load the
landmark locations manually. The ideas and algorithms developed in this

research were implemented and tested with these goals in mind.

The shape recognition algorithm was implemented on the system
shown in Fig. 6.1. It consists of an IBM-AT running at 8 MHz, an EGA
color graphics card and monitor, a mouse, a four quadrant frame grabber
with room for 4 512x512 256 grey-level images, a video camera and
backlight.

A total of 20 assorted landmarks was selected from the Atlas of
Cephalometry [1] for the experiments. The landmarks were of varying
types and should provide an adaquate test base for assessing this shape
recognition algorithm. A better than average radiograph was used as a
reference x-ray. This x-ray provided data for the initial landmark and
search window definitions. The landmarks were defined by a centre and up
to 6 20%20 structuring elements. For each structuring element a 20x20

location distribution was also initialized. Table 6.1 lists the selected
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Fig. 6.1. The cephalometrics work station,

landmarks and the number of structuring elements used to define ecach
landmark. They are listed in the order in which the locating algorithm was
applied. Figure 6.2 shows the locations of thesc points on the reference

x-ray.

The algorithm was tested on 40 randomly selected x-rays of male
and female patients ranging from 9 to 39 years of age. Two sets of tests
were performed. In the first set, the algorithm atiempts to locate the
landmarks on new x-rays. Training is performed afier processing each
x-rev. This set of tests provides an assessment of the algorithm’s ability
to learn. Whether the algorithm’s success rate improves with training is
shown here. The second set of tests evaluates the system’s long term
performance when training is no longer necessary. The 40 x-rays are

processed again. The system is thus presented with familiar shapes
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TABLE6.1.
DEFINED TEST LANDMARKS

No. Landmark Abbreviation structuring
elements
1 Sella S 3
2 Nasion Na 3
3 Mentoun Me 2
4 Gonion Go 4
5 Porion Po 1
6 Posterior point for the occlusal plane PPOcc 1
7 Anterior point for the occlusal plane APOcc 3
8 Posterior nasal spine PNS 3
9 Anterior nasal spine ANS 3
10 Pogonion Pog 2
11 Gnathion Gn 2
12 Orbitale Or 3
13 Incisor superious Is1 2
14 Incisor inferious Is 1 3
15 Apicale 1 Apl 2
16 Apicale 1 Ap 1 2
17 Point A, subspinale A 2
18 Point B, supramentale B 2
19 Soft tissue pogonion Soft Pog 3
20 Tip of the Nose Nose 3
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Fig. 6.2. The test landmarks used in the experiments,

encouatered during previous training sessions. This resembles the state of
the system when the training has converged and is no longer necessary.
This provides some assessment of the long term performance and

capability of this system,

The lateral <kull x-rays are 245x190 mm in size and are digitized
to a resolution of 512x490 pixels and 256 grey-levels. With this
resolution, position accuracies of about 0.5mm at best are possible. This
resolution is more than adequate considering that the accepted normal

range of most measurements is roughly £2mm [1].

Test results are obtained by verifying the located positions of ine
landmarks by hand. The distance in mm between the computer located

position and the operator specified position is recorded as the location
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error of the algorithm. The verified positions are then used for training so
that the system will learn the operator’s preferences. This is  desirable
since most orthodontists have different ideas about the best defined

position for various landmarks.

The best possible accuracy to be expected of this system depends
on the repeatability of the operator. If presented with the same x-ray, to
what accuracy will the observer repeatedly point out the same landmark?
In these experiments the operator was uble to repeat positions to within 2

—

pixels or £lmm.

A. Experiment 1 — Locating Before Training

1. Burpose
The purpose of this experiment is to assess the performance of the

shape recognition algorithm during training.

2. Broceduyre

The system is initinlized with the definitions of the 20 test
landmarks. X-Rays are then processed. The algorithm is applied first to
locate the landmarks. The operator then verifies those locations, recording
the distance error for each landmark. Distance errors for landmarks which
were not within the search window are not recorded since the chances of
jocating that landmark were zero to begin with. After verifying landmark
positions and recording the results of the search the automaiic training

algorithm is allowed to proceed. This is repeated for all 40 x-rays.

3. Observations

The results have been summarized in Table 6.2. This table lists the
location errors for each landmurk, the time required to process ecach x-ray,

and a categorized summary of the results. The summary has grouped the
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TABLE 6.2,
LOCATION ERRORS FOR EXPERIMENT #1 (mm)

X-ray landmark

No.
Age
Sex
Se
Na
Me
Co
Po
POcc
AOcc
PNS
ANS
Gn
Or
Isl
Isl
Apl
Apl
int
int
Soft P
N
g
E
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number of landmarks located within the ranges, 0 - 2mm, 2 - Smm,
greater than 5mm and the number of points not within the search window.
The number of points in these ranges is also expressed as a percentage of

the landmarks whose positions fell within the search window.

4. Discussion

The categorized summary in Table 6.2 has been plotted in Fig. 6.3.
Since training is performed after each x-ray is processed, the plot shows
the performance trend with training. The white area represents those points
which were located within 2mm of the target. The light grey area
represents the portion of points located between 2 and 5mm from the
target. The dark grey is proportional to the number of points whose

located position was greater than Smm in error. The black area represents

£ within2mm = wihin scarch window

within 5 mm B outside of search window

b
[
]
[~}
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1 10 20 30 40

x-ray number

Fig. 6.3. Plot of number of landmarks located within an crror of (i) 2mm, (i) Smm and (iii) were within
the search window.
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those points which could not be found because they were not within the

search window.

A noticeable trend is observed as a decrease in black area with
time. This is attributed to the search window training. As the search
windows are shifted and adjusted, the frequency of misses decreases. The
spikes ncar the 20th x-ray nccur because the search windows are allowed
to shrink. After a miss of this type occurs, the training immediately
enlarges the secarch window to encompass that possible position in future

searches.

It would be unfair to assess the shape recognition algorithm from
the plot of Fig. 6.3 which includes points that were not within the search
window. In Fig. 6.4 the data has been plotted as a percentage of those

points which were within the search windows. The performance trend of

=1 within 2mm
within 5 mm

wihin search window

% of lamdmarks

X-ray number

Fig. 6.4. Plot of number of landmarks located to within an error of (i) 2mm, (ii) Smm, and (iii) further than
5mm, as a % of those points which were within the scarch window.
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the algorithm becomes clearly visible in this plot. The number of
landmarks located to within 2mm of the actual position, the white area,
steadily increases from 60% at the start of training 1o a level of
approximately 85% after 40 x-rays. The number of landmarks located
between 2 and 5mm from the actual position, the light grey area, steadily
decreases frem about 30% to nearly 5 %. The number of landmarks which
were in error hy greater than 5Smm remained unchanged at approximately
10% throughout the training. This persistent problem with 10% of the
landmarks might be explained by analyzing the results on a landmark

categorized basis.

The bar graph of Fig. 6.5 summarizes the search results from the
40 x-rays for each landmark. The figure provides an assessment of the
target recognition algorithm for each landmark. It is obvious from the
figure that the anterior point of the occlusal plane accounts for most of
the misses. Examining the shape of this landmark on several x-rays reveals
a widely varying set of possibilities. Anything from an overbite of 20mm
to an underbite is possible. The algorithm could not be expected to
recognize this wide range of possible shapes using a single model. Similar
problems exist with other landmarks surrounding the teeth. Because the
teeth move, grow in at a varicty of angles, and are sometimes missing,
landmarks involving teeth may take on a variety of shapes. Such a variety

of possible shapes may not be representable using a single model.

A different problem occurs with the landmark orbitale. This
landmar. has a number of location errors between 2 and 5mm. The
problem may be auributed to the size or scale of this landmark. The
landmark is located at the base of the large subtle curve outlining the eye
socket. At the scale of the small 20x20 structuring elements the landmark

is obscure and not noticeable. It is only by stepping back and viewing the
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% of landmarks within search window

28 5L

Ry

|:_"| within 2mm

within Smm in search window

Fig. 6.5. Summarized results per landmark. Number of times located to within an ervor of (i) 2mm, (ii)
Smm, and (iii) further than Smm, as a % of those which were within the search window.

landmark at a larger scale that it becomes clear. This suggests that too
much resolution is being used to locate the landmark and thus, rather than
converging on the landmark the algorithm is converging on some smaller

shape or shapes within the landmark.

The time to locate the 20 landmarks on 40 x-rays using an IBM-AT
running at 8MHz has been plotted in Fig. 6.6. The jagged nature of this

plot reflects the algorithm’s ability to adjust to x-rays of varying sizes.
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Fig. 6.6. Plot of the time required to locate 20 landmarks over 40 x-rays.

The initial dip followed by & gradual increase in processing time coincides
with increases and decreases in search window sizes during training.
Overall, the system is settling at a processing time of approximately 4
hours and 30 minutes. Although a processing iime of this magnitude is
unacceptable for a cephalometric work station, presently available 386
based machines running at 33MHz run nearly 8 times faster and would cut
the processing times to approximately 30 minutes. This is still not within
the suggested 10 minute processing time, but it would not be unreasonable
to expect that a sufficiently powerful affordable machine wili become
available before too long. The processing time for locating more than 20
landmarks would not increase dramatically. Most of the time is spent

locating the first few points which require large search windows.

80



Subsequent landmark locations become more predictable and thus require

sraaller search windows.

B. Experiment 2 — Locating ajter training
1. Burpose

The purpose of this experiment is to assess the after training long

term performa.ce of the shape recogniiics algorithm.

2. kyocedure

The system is trained to locate 20 landmarks using 40 x-rays. The
shape recognition algorithm is then applied to locate the landmarks on the
same 40 x-rays us - during training. The theory behind this is that with
training the algorithm will eventually be exposed to most of the possible
shape variations of each landmark. Therefore, processing x-rays which were
previously used for training should simulate the long term state of this
system. Each x.ray is processed and the landmark positions determined by
the algorithm are compared to those determined by the operator. The
difference in mm between the respective positions is recorded as the

landmark’s location error.

3. Observations.

Location errors for the 20 landmarks on each x-ray are collected in
Table 6.3. The table also contains a categorized summary of the number
and percentage of points being located within (i) 2mm, (ii) 5mm, and (iii)

within the search windows.

4, Discussion

On average the number of landmarks located within 2mm was 88%.
This is not far from the 85% predicted in experiment 1. The number of

landmarks located between 2 and 5mm remained near 5% while the
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LOCATION ERRORS FOR EXPERIMENT #2 (mm)

TABLE 6.3.
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number of landmarks missed by more than Smm dropped slightly to

The processing time remained at roughly 4 hours and 30 minutes.

Analyzing the results for individual landmarks reinforces

discussion from experiment 1. The percentage o times a landmark

7%.

the

Wwas

located within (i) 2mm, (ii) 5mm and (iii)} the search window is illustratcd

in the bar graph of Fig. 6.7. Notice again that the landmarks causing the

% of landmarks within scarch window
’.‘lS SIO 7I5 100
8094 | 956

g0a]. 9750

&

95%108‘%
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100%11 00 %:

within 5Smm in scarch window

Fig. 6.7. Summarized results per landmark, Number of times located to within an ceror of, (i) 2mm, {ji)

Smm and, (iii) further than Smm, as a % of those which were within the scarch window.
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greatest difficulty are those involving the incisors. Actually, the anterior
occlusal point, incisor superious, and incisor inferious account for 54% of

times in which a landmark could not be located to within Smm.

The results have also been statistically summarized in Table 6.4.
The overall mean error in the locations of the landmarks is 1.lmm with a
standard deviation of 1.9mm. Again, most of this error is attributed to the
incisonal landmarks. Notice also that the standard deviations are sometimes
as much as 3 times the mean. Scanning the data in Table 6.3 reveals that

misses, although rare, have a substantial error when they occur.



TABLE 64.

STATISTICAL SUMMARY OF LOCATION ERRORS IN EXPFRIMENT #2

location error (mm)
Landmark
Mean Standard Deviation

sella 1.4 1.5

nasion 0.9 1.4

menton 1.2 32

gonion 1.2 3.5

porion 0.6 34

posterior occlusal point 1.1 1.6

anterior occlusal point 3.5 4.4

posterior nasal spine 0.3 0.4

anterior nasal spine 1.1 2.4

pogonion 04 0.7
gnathion 0.4 0.6 |

orbitale 1.1 1.7

incisor superious 24 3.8

incisor inferious 2.1 2.3

apicale 1 1.4 1.7

apicale 1 0.6 1.2

A point 1.4 1.7

B point 0.5 0.9

soft pogonion 0.3 1.8

tip of nose 0.08 0.2

average Ll 1.9
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VII. RECOMMENDATIONS FOR
FUTURE WORK

The experiments showed that on average, 88% of the landmarks will
be located to within 2mm of their verified positions. Position errors less
than approximately 2mm do not significantly affect the cephalometric
measurements and are thus satisfactory. On the other hand, errors
exceeding this amount influence the measurements beyond an acceptable
amount. Operator intervention is then required to adjust the positions of
the landmarks in error. For a shape recognition algorithm operating on
such diverse shapes and inconsistent x-ray images, 88% is very good. Yet,
for an automatic cephalometric evaluation system, it falls short. What is
required is 100% recognition, most of the time. Only with such a
performance level would this algorithm be viable and useful for automatic
landmarking of cephalograms. An automatic system requiring frequent
operator intervention would obviously be impractical. Further work is
necessary to achieve this desired level of performance. The following
recommendations come from experimental observations and recognized

limitations imposed by this implementation of the algorithm.

A. Multiple Models per Landmark

One of the first observations made in the experiments was that most
of the problems were caused by only a few landmarks. In particular, the
landmarks involving the incisors, such as the aaterior occlusal point,
incisor superious and incisor inferious accounted for 54% of the landmarks

located beyond the acceptable 2mm. A quick glance at some Xx-rays reveals
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the wide range of possible forms that these landmarks can assume. The
actual shapes of the incisors remain unchanged from x-tay to x-ray but,
their angle of protrusion and their positions about one another varies

drastically. Anywhere from an overbite of 20mm, to an underbite is

observed.

Representing such a wide range of possibilities with one set of
structuring elements, or one view, is unreasonable. What is required is a
family of views or shapes that represent the possible forms that a
landmark may assume. A similar suggestion was provided by Crimmons
and Brown [17] with equation (4.3) in reference to general shape
recognition. This idea may be applied to the grey-level shape recognition

algorithm developed in this work.

The application permitted the assumption that one landmark was
always present in the search space. Consequently, the most likely position
of a landmark is determined by finding the minimum in the shape
recognition error function. If separate versions of the landmark’s defining
structuring elements produce separaie shape recognitiun error functions,
then it should be expected that the version which most closely matches
the landmark’s appearance in the image will produce the strongest
minimum. If Dy defines the shape recognition error functions where ye I’
is the family of variations of the landmark, then the landmark is found
where the strongest minimum occurs or where

min| min Dy (%, y)}. (7.1)
T€ r Xy

B. Variable Sized Structuring Elements

This recommendation comes both from observed problems and from
limitations imposed by this implementation. In the experiments, structuring

elements were all assigned a fixed size of 20x20 pixels. This restriction
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causes problems for landmarks neighboring other unrelated features. For
exumple, in Fig. 7.1 the lips which uare near the tips of the incisors
interfere with the appearance of these landmarks. If variable sized
siructuring elements were used perhaps this type of interference could have

been avoided.

/

7

X
i

Fig. 7.1. An cxample of the possible unwanted interference causcd by the lips on the siructuring clement
defining the tip of the incisors.

One method of determining the best size for a structuring element
may be implemented through the training algorithm. In addition to
calculating the cumulative average of each pixel in a structuring element,
their variance may also be calculated. A flexible-sized structuring element
may then be achieved by using only those pixels with a variance below
some selected threshold value. In this manner the pixels or regions in the
structuring element which are found to vary unacceptably can be excluded

from the search.
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C. Variable Resolution Structuring Elements

On another front, the 20x20 size was too small for the landmark
orbitale. This landmark, appears at the base of a large subtle curve on the
x-ray. The landmark is clearly visible from a distance, but auempting to
find this landmark through a 20x 20 window is difficult. The large gradual
feature is easily obscured by smaller features which predominate in the
relatively small structuring element window. The 20x20 pixels is sutficient
but the scale or resolution 10 which they have been applied s
inappropriate. Permitting structuring  elements to be defined at  various
resolutions would add flexibility to the implementation of the shape

recognition aigorithm.

D. Search Window Shapes

One final recommendation concerns the search windows. The sizes
of these winuows could be optimized further by adding some complexity
to their shape. In this work the simplest form, a centred rectangle, was
used. Shifting the centre alone would reduce the required window sizes.
Whenever a landmark’s position forced an cnlargement of one side of o
trained search window, the enlargement wias done symmetrically to both
sides. This could have been avoided by using a more complex definition
for the window size. For example, rather than specifying a height and
width for the window, separate heights for the top and botiom halves and
separate widths for the left and right sides of the window could have been
used. The idea could be carried further to incorporate different window

shapes.
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VIII. CONCLUSIONS

A. Contribution

A new automatic shape recognition algorithm based on grey-scale
mathematical morphology was developed to extract craniofacial landmarks
from cephalograms. The morphological shape recognition algorithm of
Crimmins and Brown [17] was modified so that the search for a grey-level
target becomes a search for minima in the shape recognition error function
computed using max—min operations. It was then found that by replacing
the max-min operation with the statistical standard deviatir n, the
algorithm became less susceptible to noise and more accommodating to
subtle differences in skeletal topographies. Decomposition was used to
desensitize the algorithm to size differences. A new technique was also
devised for minimizing the search window sizes, thus improving speed and

minimizing the detection of false targets.

B. Summary of Resulls

The algorithms were implemented in a cephalometric work station on
an IBM-AT running at 8MHz. The system was trained to locate 20
landmarks. Tests were performed using 40 x-rays from male and female
patients ranging from 9 to 39 years of age. Two secparate experiments
were conducted to determine; (i) the progress with training and (ii) the

long term performance of this system.

In the first experiment, the number of landmarks located to within
2mm increased steadily from 60% to 85% on average after 40 x-rays. The

proce:sing time settled to approximately 4 hours and 30 minutes.
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In the second experiment, the number of landmarks located within
2mm was 88% on average. The overall mea:: error in the located positions
of the landmarks was 1l.Imm with a standard deviation of 1.9mm.
Approximately 50% of the position errors greater than 2mm were due to
the incisonal landmarks. It was discovered that these landmarks take on a

variety of forms and could not be adequately represented by a single set

of structuring elements.
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